Catalog of Point Configurations

The following table shows the number of abstract order types. Data can be accessed by clicking on the corresponding number (if available):

  card = 2 card = 3 card = 4 card = 5 card = 6 card = 7 card = 8 card = 9 card = 10
rank = 2 1 1 1 1 1 1 1 1 1
rank = 3 (dim = 2) 1 3 11 93 2 121 122 508 15 296 266 unknown
rank = 4 (dim = 3) 1 5 55 5 083 10 775 236 unknown unknown
rank = 5 (dim = 4) 1 8 204 505 336 unknown unknown
rank = 6 (dim = 5) 1 11 705 unknown unknown
rank = 7 (dim = 6) 1 15 2 293 unknown
rank = 8 (dim = 7) 1 19 7 377
rank = 9 (dim = 8) 1 24
rank = 10 (dim = 9) 1

Cardinality = 9, rank = 8 (dimension = 7)

RevLex-Index from to        

Note: The representation of the abstract order type is not lexicographically maximal.


List of representatives of OT(9,8) stopping with c = 19: 111111112 222222233 333333444 444445555 555566666 666777777 778888888 899999999 OT(9,8, 1) = +-+-+-+-- OT(9,8, 2) = +-+-+-++- OT(9,8, 3) = ++--+-+++ OT(9,8, 4) = +------+- OT(9,8, 5) = 0+-+---+- OT(9,8, 6) = 0+-+----- OT(9,8, 7) = 0+++-++++ OT(9,8, 8) = 0+----+++ OT(9,8, 9) = 00+-+---+ OT(9,8,10) = 00+-+---- OT(9,8,11) = 00++---++ OT(9,8,12) = 000+-+++- OT(9,8,13) = 000++-+++ OT(9,8,14) = 000+--+++ OT(9,8,15) = 0000+---+ OT(9,8,16) = 0000++-++ OT(9,8,17) = 00000+++- OT(9,8,18) = 00000++-- OT(9,8,19) = 000000+++



Maintained by Lukas Finschi (finschi [at] ifor.math.ethz.ch)