Catalog of Point Configurations

The following table shows the number of abstract order types. Data can be accessed by clicking on the corresponding number (if available):

  card = 2 card = 3 card = 4 card = 5 card = 6 card = 7 card = 8 card = 9 card = 10
rank = 2 1 1 1 1 1 1 1 1 1
rank = 3 (dim = 2) 1 3 11 93 2 121 122 508 15 296 266 unknown
rank = 4 (dim = 3) 1 5 55 5 083 10 775 236 unknown unknown
rank = 5 (dim = 4) 1 8 204 505 336 unknown unknown
rank = 6 (dim = 5) 1 11 705 unknown unknown
rank = 7 (dim = 6) 1 15 2 293 unknown
rank = 8 (dim = 7) 1 19 7 377
rank = 9 (dim = 8) 1 24
rank = 10 (dim = 9) 1

Cardinality = 10, rank = 9 (dimension = 8)

RevLex-Index from to        

Note: The representation of the abstract order type is not lexicographically maximal.


List of representatives of OT(10,9) stopping with c = 24: 1111111112 2222222233 3333333444 4444445555 5555566666 6666777777 7778888888 8899999999 9aaaaaaaaa OT(10,9, 1) = +-+-+-+--- OT(10,9, 2) = +++-+---+- OT(10,9, 3) = +-+-++---- OT(10,9, 4) = ++-+++---- OT(10,9, 5) = +++++++--+ OT(10,9, 6) = 0+-+-+-+-- OT(10,9, 7) = 0+-+-+-++- OT(10,9, 8) = 0++--+-+++ OT(10,9, 9) = 0+------+- OT(10,9,10) = 00+-+---+- OT(10,9,11) = 00+-+----- OT(10,9,12) = 00+++-++++ OT(10,9,13) = 00+----+++ OT(10,9,14) = 000+-+---+ OT(10,9,15) = 000+-+---- OT(10,9,16) = 000++---++ OT(10,9,17) = 0000+-+++- OT(10,9,18) = 0000++-+++ OT(10,9,19) = 0000+--+++ OT(10,9,20) = 00000+---+ OT(10,9,21) = 00000++-++ OT(10,9,22) = 000000+++- OT(10,9,23) = 000000++-- OT(10,9,24) = 0000000+++



Maintained by Lukas Finschi (finschi [at] ifor.math.ethz.ch)